3.76 \(\int \cos ^3(c+d x) (a \cos (c+d x)+b \sin (c+d x))^4 \, dx\)

Optimal. Leaf size=220 \[ -\frac {a^4 \sin ^7(c+d x)}{7 d}+\frac {3 a^4 \sin ^5(c+d x)}{5 d}-\frac {a^4 \sin ^3(c+d x)}{d}+\frac {a^4 \sin (c+d x)}{d}-\frac {4 a^3 b \cos ^7(c+d x)}{7 d}+\frac {6 a^2 b^2 \sin ^7(c+d x)}{7 d}-\frac {12 a^2 b^2 \sin ^5(c+d x)}{5 d}+\frac {2 a^2 b^2 \sin ^3(c+d x)}{d}+\frac {4 a b^3 \cos ^7(c+d x)}{7 d}-\frac {4 a b^3 \cos ^5(c+d x)}{5 d}-\frac {b^4 \sin ^7(c+d x)}{7 d}+\frac {b^4 \sin ^5(c+d x)}{5 d} \]

[Out]

-4/5*a*b^3*cos(d*x+c)^5/d-4/7*a^3*b*cos(d*x+c)^7/d+4/7*a*b^3*cos(d*x+c)^7/d+a^4*sin(d*x+c)/d-a^4*sin(d*x+c)^3/
d+2*a^2*b^2*sin(d*x+c)^3/d+3/5*a^4*sin(d*x+c)^5/d-12/5*a^2*b^2*sin(d*x+c)^5/d+1/5*b^4*sin(d*x+c)^5/d-1/7*a^4*s
in(d*x+c)^7/d+6/7*a^2*b^2*sin(d*x+c)^7/d-1/7*b^4*sin(d*x+c)^7/d

________________________________________________________________________________________

Rubi [A]  time = 0.23, antiderivative size = 220, normalized size of antiderivative = 1.00, number of steps used = 15, number of rules used = 7, integrand size = 28, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.250, Rules used = {3090, 2633, 2565, 30, 2564, 270, 14} \[ \frac {6 a^2 b^2 \sin ^7(c+d x)}{7 d}-\frac {12 a^2 b^2 \sin ^5(c+d x)}{5 d}+\frac {2 a^2 b^2 \sin ^3(c+d x)}{d}-\frac {4 a^3 b \cos ^7(c+d x)}{7 d}-\frac {a^4 \sin ^7(c+d x)}{7 d}+\frac {3 a^4 \sin ^5(c+d x)}{5 d}-\frac {a^4 \sin ^3(c+d x)}{d}+\frac {a^4 \sin (c+d x)}{d}+\frac {4 a b^3 \cos ^7(c+d x)}{7 d}-\frac {4 a b^3 \cos ^5(c+d x)}{5 d}-\frac {b^4 \sin ^7(c+d x)}{7 d}+\frac {b^4 \sin ^5(c+d x)}{5 d} \]

Antiderivative was successfully verified.

[In]

Int[Cos[c + d*x]^3*(a*Cos[c + d*x] + b*Sin[c + d*x])^4,x]

[Out]

(-4*a*b^3*Cos[c + d*x]^5)/(5*d) - (4*a^3*b*Cos[c + d*x]^7)/(7*d) + (4*a*b^3*Cos[c + d*x]^7)/(7*d) + (a^4*Sin[c
 + d*x])/d - (a^4*Sin[c + d*x]^3)/d + (2*a^2*b^2*Sin[c + d*x]^3)/d + (3*a^4*Sin[c + d*x]^5)/(5*d) - (12*a^2*b^
2*Sin[c + d*x]^5)/(5*d) + (b^4*Sin[c + d*x]^5)/(5*d) - (a^4*Sin[c + d*x]^7)/(7*d) + (6*a^2*b^2*Sin[c + d*x]^7)
/(7*d) - (b^4*Sin[c + d*x]^7)/(7*d)

Rule 14

Int[(u_)*((c_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*u, x], x] /; FreeQ[{c, m}, x] && SumQ[u]
 &&  !LinearQ[u, x] &&  !MatchQ[u, (a_) + (b_.)*(v_) /; FreeQ[{a, b}, x] && InverseFunctionQ[v]]

Rule 30

Int[(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)/(m + 1), x] /; FreeQ[m, x] && NeQ[m, -1]

Rule 270

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*(a + b*x^n)^p,
 x], x] /; FreeQ[{a, b, c, m, n}, x] && IGtQ[p, 0]

Rule 2564

Int[cos[(e_.) + (f_.)*(x_)]^(n_.)*((a_.)*sin[(e_.) + (f_.)*(x_)])^(m_.), x_Symbol] :> Dist[1/(a*f), Subst[Int[
x^m*(1 - x^2/a^2)^((n - 1)/2), x], x, a*Sin[e + f*x]], x] /; FreeQ[{a, e, f, m}, x] && IntegerQ[(n - 1)/2] &&
 !(IntegerQ[(m - 1)/2] && LtQ[0, m, n])

Rule 2565

Int[(cos[(e_.) + (f_.)*(x_)]*(a_.))^(m_.)*sin[(e_.) + (f_.)*(x_)]^(n_.), x_Symbol] :> -Dist[(a*f)^(-1), Subst[
Int[x^m*(1 - x^2/a^2)^((n - 1)/2), x], x, a*Cos[e + f*x]], x] /; FreeQ[{a, e, f, m}, x] && IntegerQ[(n - 1)/2]
 &&  !(IntegerQ[(m - 1)/2] && GtQ[m, 0] && LeQ[m, n])

Rule 2633

Int[sin[(c_.) + (d_.)*(x_)]^(n_), x_Symbol] :> -Dist[d^(-1), Subst[Int[Expand[(1 - x^2)^((n - 1)/2), x], x], x
, Cos[c + d*x]], x] /; FreeQ[{c, d}, x] && IGtQ[(n - 1)/2, 0]

Rule 3090

Int[cos[(c_.) + (d_.)*(x_)]^(m_.)*(cos[(c_.) + (d_.)*(x_)]*(a_.) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(n_.), x_Sym
bol] :> Int[ExpandTrig[cos[c + d*x]^m*(a*cos[c + d*x] + b*sin[c + d*x])^n, x], x] /; FreeQ[{a, b, c, d}, x] &&
 IntegerQ[m] && IGtQ[n, 0]

Rubi steps

\begin {align*} \int \cos ^3(c+d x) (a \cos (c+d x)+b \sin (c+d x))^4 \, dx &=\int \left (a^4 \cos ^7(c+d x)+4 a^3 b \cos ^6(c+d x) \sin (c+d x)+6 a^2 b^2 \cos ^5(c+d x) \sin ^2(c+d x)+4 a b^3 \cos ^4(c+d x) \sin ^3(c+d x)+b^4 \cos ^3(c+d x) \sin ^4(c+d x)\right ) \, dx\\ &=a^4 \int \cos ^7(c+d x) \, dx+\left (4 a^3 b\right ) \int \cos ^6(c+d x) \sin (c+d x) \, dx+\left (6 a^2 b^2\right ) \int \cos ^5(c+d x) \sin ^2(c+d x) \, dx+\left (4 a b^3\right ) \int \cos ^4(c+d x) \sin ^3(c+d x) \, dx+b^4 \int \cos ^3(c+d x) \sin ^4(c+d x) \, dx\\ &=-\frac {a^4 \operatorname {Subst}\left (\int \left (1-3 x^2+3 x^4-x^6\right ) \, dx,x,-\sin (c+d x)\right )}{d}-\frac {\left (4 a^3 b\right ) \operatorname {Subst}\left (\int x^6 \, dx,x,\cos (c+d x)\right )}{d}+\frac {\left (6 a^2 b^2\right ) \operatorname {Subst}\left (\int x^2 \left (1-x^2\right )^2 \, dx,x,\sin (c+d x)\right )}{d}-\frac {\left (4 a b^3\right ) \operatorname {Subst}\left (\int x^4 \left (1-x^2\right ) \, dx,x,\cos (c+d x)\right )}{d}+\frac {b^4 \operatorname {Subst}\left (\int x^4 \left (1-x^2\right ) \, dx,x,\sin (c+d x)\right )}{d}\\ &=-\frac {4 a^3 b \cos ^7(c+d x)}{7 d}+\frac {a^4 \sin (c+d x)}{d}-\frac {a^4 \sin ^3(c+d x)}{d}+\frac {3 a^4 \sin ^5(c+d x)}{5 d}-\frac {a^4 \sin ^7(c+d x)}{7 d}+\frac {\left (6 a^2 b^2\right ) \operatorname {Subst}\left (\int \left (x^2-2 x^4+x^6\right ) \, dx,x,\sin (c+d x)\right )}{d}-\frac {\left (4 a b^3\right ) \operatorname {Subst}\left (\int \left (x^4-x^6\right ) \, dx,x,\cos (c+d x)\right )}{d}+\frac {b^4 \operatorname {Subst}\left (\int \left (x^4-x^6\right ) \, dx,x,\sin (c+d x)\right )}{d}\\ &=-\frac {4 a b^3 \cos ^5(c+d x)}{5 d}-\frac {4 a^3 b \cos ^7(c+d x)}{7 d}+\frac {4 a b^3 \cos ^7(c+d x)}{7 d}+\frac {a^4 \sin (c+d x)}{d}-\frac {a^4 \sin ^3(c+d x)}{d}+\frac {2 a^2 b^2 \sin ^3(c+d x)}{d}+\frac {3 a^4 \sin ^5(c+d x)}{5 d}-\frac {12 a^2 b^2 \sin ^5(c+d x)}{5 d}+\frac {b^4 \sin ^5(c+d x)}{5 d}-\frac {a^4 \sin ^7(c+d x)}{7 d}+\frac {6 a^2 b^2 \sin ^7(c+d x)}{7 d}-\frac {b^4 \sin ^7(c+d x)}{7 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.54, size = 204, normalized size = 0.93 \[ \frac {-140 a b \left (5 a^2+3 b^2\right ) \cos (c+d x)-140 a b \left (3 a^2+b^2\right ) \cos (3 (c+d x))-28 a b \left (5 a^2-b^2\right ) \cos (5 (c+d x))-20 a b \left (a^2-b^2\right ) \cos (7 (c+d x))+35 \left (35 a^4+30 a^2 b^2+3 b^4\right ) \sin (c+d x)+35 \left (7 a^4-2 a^2 b^2-b^4\right ) \sin (3 (c+d x))+7 \left (7 a^4-18 a^2 b^2-b^4\right ) \sin (5 (c+d x))+5 \left (a^4-6 a^2 b^2+b^4\right ) \sin (7 (c+d x))}{2240 d} \]

Antiderivative was successfully verified.

[In]

Integrate[Cos[c + d*x]^3*(a*Cos[c + d*x] + b*Sin[c + d*x])^4,x]

[Out]

(-140*a*b*(5*a^2 + 3*b^2)*Cos[c + d*x] - 140*a*b*(3*a^2 + b^2)*Cos[3*(c + d*x)] - 28*a*b*(5*a^2 - b^2)*Cos[5*(
c + d*x)] - 20*a*b*(a^2 - b^2)*Cos[7*(c + d*x)] + 35*(35*a^4 + 30*a^2*b^2 + 3*b^4)*Sin[c + d*x] + 35*(7*a^4 -
2*a^2*b^2 - b^4)*Sin[3*(c + d*x)] + 7*(7*a^4 - 18*a^2*b^2 - b^4)*Sin[5*(c + d*x)] + 5*(a^4 - 6*a^2*b^2 + b^4)*
Sin[7*(c + d*x)])/(2240*d)

________________________________________________________________________________________

fricas [A]  time = 0.62, size = 149, normalized size = 0.68 \[ -\frac {28 \, a b^{3} \cos \left (d x + c\right )^{5} + 20 \, {\left (a^{3} b - a b^{3}\right )} \cos \left (d x + c\right )^{7} - {\left (5 \, {\left (a^{4} - 6 \, a^{2} b^{2} + b^{4}\right )} \cos \left (d x + c\right )^{6} + 2 \, {\left (3 \, a^{4} + 3 \, a^{2} b^{2} - 4 \, b^{4}\right )} \cos \left (d x + c\right )^{4} + 16 \, a^{4} + 16 \, a^{2} b^{2} + 2 \, b^{4} + {\left (8 \, a^{4} + 8 \, a^{2} b^{2} + b^{4}\right )} \cos \left (d x + c\right )^{2}\right )} \sin \left (d x + c\right )}{35 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^3*(a*cos(d*x+c)+b*sin(d*x+c))^4,x, algorithm="fricas")

[Out]

-1/35*(28*a*b^3*cos(d*x + c)^5 + 20*(a^3*b - a*b^3)*cos(d*x + c)^7 - (5*(a^4 - 6*a^2*b^2 + b^4)*cos(d*x + c)^6
 + 2*(3*a^4 + 3*a^2*b^2 - 4*b^4)*cos(d*x + c)^4 + 16*a^4 + 16*a^2*b^2 + 2*b^4 + (8*a^4 + 8*a^2*b^2 + b^4)*cos(
d*x + c)^2)*sin(d*x + c))/d

________________________________________________________________________________________

giac [A]  time = 0.49, size = 229, normalized size = 1.04 \[ -\frac {{\left (a^{3} b - a b^{3}\right )} \cos \left (7 \, d x + 7 \, c\right )}{112 \, d} - \frac {{\left (5 \, a^{3} b - a b^{3}\right )} \cos \left (5 \, d x + 5 \, c\right )}{80 \, d} - \frac {{\left (3 \, a^{3} b + a b^{3}\right )} \cos \left (3 \, d x + 3 \, c\right )}{16 \, d} - \frac {{\left (5 \, a^{3} b + 3 \, a b^{3}\right )} \cos \left (d x + c\right )}{16 \, d} + \frac {{\left (a^{4} - 6 \, a^{2} b^{2} + b^{4}\right )} \sin \left (7 \, d x + 7 \, c\right )}{448 \, d} + \frac {{\left (7 \, a^{4} - 18 \, a^{2} b^{2} - b^{4}\right )} \sin \left (5 \, d x + 5 \, c\right )}{320 \, d} + \frac {{\left (7 \, a^{4} - 2 \, a^{2} b^{2} - b^{4}\right )} \sin \left (3 \, d x + 3 \, c\right )}{64 \, d} + \frac {{\left (35 \, a^{4} + 30 \, a^{2} b^{2} + 3 \, b^{4}\right )} \sin \left (d x + c\right )}{64 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^3*(a*cos(d*x+c)+b*sin(d*x+c))^4,x, algorithm="giac")

[Out]

-1/112*(a^3*b - a*b^3)*cos(7*d*x + 7*c)/d - 1/80*(5*a^3*b - a*b^3)*cos(5*d*x + 5*c)/d - 1/16*(3*a^3*b + a*b^3)
*cos(3*d*x + 3*c)/d - 1/16*(5*a^3*b + 3*a*b^3)*cos(d*x + c)/d + 1/448*(a^4 - 6*a^2*b^2 + b^4)*sin(7*d*x + 7*c)
/d + 1/320*(7*a^4 - 18*a^2*b^2 - b^4)*sin(5*d*x + 5*c)/d + 1/64*(7*a^4 - 2*a^2*b^2 - b^4)*sin(3*d*x + 3*c)/d +
 1/64*(35*a^4 + 30*a^2*b^2 + 3*b^4)*sin(d*x + c)/d

________________________________________________________________________________________

maple [A]  time = 39.35, size = 206, normalized size = 0.94 \[ \frac {b^{4} \left (-\frac {\left (\sin ^{3}\left (d x +c \right )\right ) \left (\cos ^{4}\left (d x +c \right )\right )}{7}-\frac {3 \sin \left (d x +c \right ) \left (\cos ^{4}\left (d x +c \right )\right )}{35}+\frac {\left (2+\cos ^{2}\left (d x +c \right )\right ) \sin \left (d x +c \right )}{35}\right )+4 a \,b^{3} \left (-\frac {\left (\sin ^{2}\left (d x +c \right )\right ) \left (\cos ^{5}\left (d x +c \right )\right )}{7}-\frac {2 \left (\cos ^{5}\left (d x +c \right )\right )}{35}\right )+6 a^{2} b^{2} \left (-\frac {\sin \left (d x +c \right ) \left (\cos ^{6}\left (d x +c \right )\right )}{7}+\frac {\left (\frac {8}{3}+\cos ^{4}\left (d x +c \right )+\frac {4 \left (\cos ^{2}\left (d x +c \right )\right )}{3}\right ) \sin \left (d x +c \right )}{35}\right )-\frac {4 a^{3} b \left (\cos ^{7}\left (d x +c \right )\right )}{7}+\frac {a^{4} \left (\frac {16}{5}+\cos ^{6}\left (d x +c \right )+\frac {6 \left (\cos ^{4}\left (d x +c \right )\right )}{5}+\frac {8 \left (\cos ^{2}\left (d x +c \right )\right )}{5}\right ) \sin \left (d x +c \right )}{7}}{d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^3*(a*cos(d*x+c)+b*sin(d*x+c))^4,x)

[Out]

1/d*(b^4*(-1/7*sin(d*x+c)^3*cos(d*x+c)^4-3/35*sin(d*x+c)*cos(d*x+c)^4+1/35*(2+cos(d*x+c)^2)*sin(d*x+c))+4*a*b^
3*(-1/7*sin(d*x+c)^2*cos(d*x+c)^5-2/35*cos(d*x+c)^5)+6*a^2*b^2*(-1/7*sin(d*x+c)*cos(d*x+c)^6+1/35*(8/3+cos(d*x
+c)^4+4/3*cos(d*x+c)^2)*sin(d*x+c))-4/7*a^3*b*cos(d*x+c)^7+1/7*a^4*(16/5+cos(d*x+c)^6+6/5*cos(d*x+c)^4+8/5*cos
(d*x+c)^2)*sin(d*x+c))

________________________________________________________________________________________

maxima [A]  time = 0.33, size = 154, normalized size = 0.70 \[ -\frac {20 \, a^{3} b \cos \left (d x + c\right )^{7} + {\left (5 \, \sin \left (d x + c\right )^{7} - 21 \, \sin \left (d x + c\right )^{5} + 35 \, \sin \left (d x + c\right )^{3} - 35 \, \sin \left (d x + c\right )\right )} a^{4} - 2 \, {\left (15 \, \sin \left (d x + c\right )^{7} - 42 \, \sin \left (d x + c\right )^{5} + 35 \, \sin \left (d x + c\right )^{3}\right )} a^{2} b^{2} - 4 \, {\left (5 \, \cos \left (d x + c\right )^{7} - 7 \, \cos \left (d x + c\right )^{5}\right )} a b^{3} + {\left (5 \, \sin \left (d x + c\right )^{7} - 7 \, \sin \left (d x + c\right )^{5}\right )} b^{4}}{35 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^3*(a*cos(d*x+c)+b*sin(d*x+c))^4,x, algorithm="maxima")

[Out]

-1/35*(20*a^3*b*cos(d*x + c)^7 + (5*sin(d*x + c)^7 - 21*sin(d*x + c)^5 + 35*sin(d*x + c)^3 - 35*sin(d*x + c))*
a^4 - 2*(15*sin(d*x + c)^7 - 42*sin(d*x + c)^5 + 35*sin(d*x + c)^3)*a^2*b^2 - 4*(5*cos(d*x + c)^7 - 7*cos(d*x
+ c)^5)*a*b^3 + (5*sin(d*x + c)^7 - 7*sin(d*x + c)^5)*b^4)/d

________________________________________________________________________________________

mupad [B]  time = 1.28, size = 291, normalized size = 1.32 \[ -\frac {\frac {b^4\,\sin \left (3\,c+3\,d\,x\right )}{64}-\frac {3\,b^4\,\sin \left (c+d\,x\right )}{64}-\frac {7\,a^4\,\sin \left (3\,c+3\,d\,x\right )}{64}-\frac {7\,a^4\,\sin \left (5\,c+5\,d\,x\right )}{320}-\frac {a^4\,\sin \left (7\,c+7\,d\,x\right )}{448}-\frac {35\,a^4\,\sin \left (c+d\,x\right )}{64}+\frac {b^4\,\sin \left (5\,c+5\,d\,x\right )}{320}-\frac {b^4\,\sin \left (7\,c+7\,d\,x\right )}{448}+\frac {a\,b^3\,\cos \left (3\,c+3\,d\,x\right )}{16}+\frac {3\,a^3\,b\,\cos \left (3\,c+3\,d\,x\right )}{16}-\frac {a\,b^3\,\cos \left (5\,c+5\,d\,x\right )}{80}+\frac {a^3\,b\,\cos \left (5\,c+5\,d\,x\right )}{16}-\frac {a\,b^3\,\cos \left (7\,c+7\,d\,x\right )}{112}+\frac {a^3\,b\,\cos \left (7\,c+7\,d\,x\right )}{112}-\frac {15\,a^2\,b^2\,\sin \left (c+d\,x\right )}{32}+\frac {a^2\,b^2\,\sin \left (3\,c+3\,d\,x\right )}{32}+\frac {9\,a^2\,b^2\,\sin \left (5\,c+5\,d\,x\right )}{160}+\frac {3\,a^2\,b^2\,\sin \left (7\,c+7\,d\,x\right )}{224}+\frac {3\,a\,b^3\,\cos \left (c+d\,x\right )}{16}+\frac {5\,a^3\,b\,\cos \left (c+d\,x\right )}{16}}{d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(c + d*x)^3*(a*cos(c + d*x) + b*sin(c + d*x))^4,x)

[Out]

-((b^4*sin(3*c + 3*d*x))/64 - (3*b^4*sin(c + d*x))/64 - (7*a^4*sin(3*c + 3*d*x))/64 - (7*a^4*sin(5*c + 5*d*x))
/320 - (a^4*sin(7*c + 7*d*x))/448 - (35*a^4*sin(c + d*x))/64 + (b^4*sin(5*c + 5*d*x))/320 - (b^4*sin(7*c + 7*d
*x))/448 + (a*b^3*cos(3*c + 3*d*x))/16 + (3*a^3*b*cos(3*c + 3*d*x))/16 - (a*b^3*cos(5*c + 5*d*x))/80 + (a^3*b*
cos(5*c + 5*d*x))/16 - (a*b^3*cos(7*c + 7*d*x))/112 + (a^3*b*cos(7*c + 7*d*x))/112 - (15*a^2*b^2*sin(c + d*x))
/32 + (a^2*b^2*sin(3*c + 3*d*x))/32 + (9*a^2*b^2*sin(5*c + 5*d*x))/160 + (3*a^2*b^2*sin(7*c + 7*d*x))/224 + (3
*a*b^3*cos(c + d*x))/16 + (5*a^3*b*cos(c + d*x))/16)/d

________________________________________________________________________________________

sympy [A]  time = 5.71, size = 286, normalized size = 1.30 \[ \begin {cases} \frac {16 a^{4} \sin ^{7}{\left (c + d x \right )}}{35 d} + \frac {8 a^{4} \sin ^{5}{\left (c + d x \right )} \cos ^{2}{\left (c + d x \right )}}{5 d} + \frac {2 a^{4} \sin ^{3}{\left (c + d x \right )} \cos ^{4}{\left (c + d x \right )}}{d} + \frac {a^{4} \sin {\left (c + d x \right )} \cos ^{6}{\left (c + d x \right )}}{d} - \frac {4 a^{3} b \cos ^{7}{\left (c + d x \right )}}{7 d} + \frac {16 a^{2} b^{2} \sin ^{7}{\left (c + d x \right )}}{35 d} + \frac {8 a^{2} b^{2} \sin ^{5}{\left (c + d x \right )} \cos ^{2}{\left (c + d x \right )}}{5 d} + \frac {2 a^{2} b^{2} \sin ^{3}{\left (c + d x \right )} \cos ^{4}{\left (c + d x \right )}}{d} - \frac {4 a b^{3} \sin ^{2}{\left (c + d x \right )} \cos ^{5}{\left (c + d x \right )}}{5 d} - \frac {8 a b^{3} \cos ^{7}{\left (c + d x \right )}}{35 d} + \frac {2 b^{4} \sin ^{7}{\left (c + d x \right )}}{35 d} + \frac {b^{4} \sin ^{5}{\left (c + d x \right )} \cos ^{2}{\left (c + d x \right )}}{5 d} & \text {for}\: d \neq 0 \\x \left (a \cos {\relax (c )} + b \sin {\relax (c )}\right )^{4} \cos ^{3}{\relax (c )} & \text {otherwise} \end {cases} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**3*(a*cos(d*x+c)+b*sin(d*x+c))**4,x)

[Out]

Piecewise((16*a**4*sin(c + d*x)**7/(35*d) + 8*a**4*sin(c + d*x)**5*cos(c + d*x)**2/(5*d) + 2*a**4*sin(c + d*x)
**3*cos(c + d*x)**4/d + a**4*sin(c + d*x)*cos(c + d*x)**6/d - 4*a**3*b*cos(c + d*x)**7/(7*d) + 16*a**2*b**2*si
n(c + d*x)**7/(35*d) + 8*a**2*b**2*sin(c + d*x)**5*cos(c + d*x)**2/(5*d) + 2*a**2*b**2*sin(c + d*x)**3*cos(c +
 d*x)**4/d - 4*a*b**3*sin(c + d*x)**2*cos(c + d*x)**5/(5*d) - 8*a*b**3*cos(c + d*x)**7/(35*d) + 2*b**4*sin(c +
 d*x)**7/(35*d) + b**4*sin(c + d*x)**5*cos(c + d*x)**2/(5*d), Ne(d, 0)), (x*(a*cos(c) + b*sin(c))**4*cos(c)**3
, True))

________________________________________________________________________________________